[image: image1.wmf][image: image2.wmf][image: image3.png]




The Windows Presentation Foundation
9th January 2008
Ian Griffiths, Interact Software
1. Why WPF?

Intended as a successor to the previous generation of User Interface APIs and frameworks. Most of the Microsoft frameworks released in the past have been layered on USER32 and GDI32 APIs. Windows Presentation Foundation reimplements the functionality from scratch.

It’s written natively as a .NET application. C++ programmers have to use the .NET wrapping technology.

Although it ships with Vista and is native in .NET 3.0, it is redistributable to older versions of Windows. Windows Vista uses WPF – all the window boundaries, the magnifier etc. are enabled by WPF.
Microsoft’s flagship Silverlight product is based on WPF, but they have kept this fairly quiet.

1.1 Why start again?

The computing paradigm has changed since the early days of Windows.

· Power

· Screen resolution

· Raised expectations (movies, games consoles)

· Lessons from the Web (branding, mark-up)

Backwards compatibility can take you only so far. If you want to break free of the restrictions of the old Windows APIs (which were conceived in the days of the early IBM AT) you need to start in a completely new way. The old primitives had capabilities designed to cope with resource-poor graphics cards, small memories etc.

Graphics card manufacturers came up with 3D for CAD and games to drive further sales. But Windows hasn’t caught up with these user interface paradigms. Microsoft has attempted to collaborate with leading graphics card vendors to find uses for their 3D features within Windows applications. It’s an order of magnitude more difficult than placing a button on a form. The underlying paradigms of Windows video driving didn’t particularly suit the capabilities of modern graphics cards.
In terms of screen resolution, size and colour, CRT displays had more or less peaked about four years ago – flat panel displays have suddenly taken over. These have been so successful that Sony has closed its glass tube factory over two years ago. 200dpi colour screens are already available (effectively 600 horizontally, because there are three coloured bars per pixel). The limit of human eye resolution is about 300dpi at a normal viewing distance. More normally, desktop flat-panel displays have about 100dpi (unless you pay over the odds).

Most Windows applications don’t cater for large high-resolution screens. System fonts etc. come out very small. Actually, since Windows NT the operating system has supported resolution independence. However, applications tended not to bother. All primitives are expressed in terms of pixels, which makes resolution-independence a pain.
In WPF, all applications inherit resolution-independence by default (you can break it, but it is difficult). WPF starts from the assumption that things don’t line up on pixel boundaries – the co-ordinate system is in floating point.
1.2 Non-technology reasons

Windows is no longer the only game in town – the worlds of web browsers and games consoles (not to mention Hollywood’s quaint ideas of what computers will be in the future) have raised user expectations in terms of appearance, style, and user interaction. Anyone who was to ship a 80x24 character-based application these days would be treated as a nutcase. Even old-fashioned battleship-grey forms-based business applications are beginning to look distinctly pedestrian.

Microsoft identified the mark-up language as a key factor in enabling the more snazzy user interfaces common on the Web.

1.3 It’s all been done before, but…
WPF is built on DirectX, so you could theoretically do everything you do in WPF using DirectX. Other capabilities are already available in Flash, Win32 or HTML – but not in combination. Try animating a picture on top of a Win32 button!

WPF provides a single integrated solution. XamlPad is a development tool which is ideal for experimentation. Just type some XML markup into the editor window and the resulting application immediately appears in another panel. You can zoom it to any size, of course.

The markup is of course XAML. XAML separates concerns such as shape, colour, content, position and animation. So when you want two different things (a legend and a coloured ellipse) in a button, you structure them using a StackPanel element, which can also be used to organise the relative position and orientation of anything within anything else.
Content models are not constrained – you can put lots of things inside anything else. Of course, this allows you to commit vile crimes against usability, such as nested menus within buttons and text input boxes in menus! There will presumably be aberrations akin to the HTML BLINK tag.
RenderTransform elements can be applied to any element (e.g. rotate the entire construct by 10% clockwise).

WPF gets away from the idea that an application “owns” a little rectangle of a screen. For example, the pulldown menu of the previous example can pop out beyond the boundaries of the application window.

1.4 Composition Models

In Visual Studio .NET, you can design a user interface consisting of an image background with transparent labels over it, but it is a fundamental requirement that the labels do not overlap – otherwise very strange effects occur.

Using Blend (a WPF workbench written in WPF) Ian was able to implement the same example and the result of overlapping was what you might expect. This is because WPF uses the “Painter’s Algorithm” to compose graphical elements. So overlaps and semi-transparent elements work as you would expect. WPF supports the rendering model internally.
This wasn’t done originally, because it requires more memory and processing power than the complicated WIN32 algorithm. Flickering results from failing to complete the rendering before the screen refresh interval. Today’s graphics cards have two or more frame buffers so that this is no problem. Extra frame buffers are used to hold things like textures for surface rendering in games.
1.5 Main components

The layers (from bottom to top) are:

· DirectX

· Composition Engine (or Media Integration Layer – MIL)

· Unmanaged – not written in .NET but in C++, because it has to interface to COM as efficiently as possible

· Presentation Core (written in .NET – talks to the MIL in an efficient, chunked API)
· Presentation Framework (written in .NET)
Interestingly, the MIL API is currently not documented and may still evolve. The “interesting” parts of WPF all happen in the Presentation Core and Presentation Framework. XAML is the first of these to look at.
2. XAML

Surprisingly, XAML and WPF know nothing about each other! But the XAML object model can be mapped easily to the WPF object model (or conversely, onto the Javascript object model, which is what Silverlight does). The WPF object model can also be programmed directly in C#, but WPF was designed explicitly to be easily used from XAML.

New users tend to get carried away with XAML, even though it doesn’t have a way to invoke methods. WPF has a very declarative style, so this matters less than you might imagine. As an example of using data binding, Charles Petzold demonstrated a FFT transform application written entirely in XAML. But beware – code is usually a better medium for expressing application functionality.

Expression Blend and Illustrator can generate XAML for the user interfaces designed by the UI professional. So can other tools, including 3D ones.

3. Programming Model Highlights

3.1 Underlying Metaphor

The XAML expresses a logical tree of elements.

WPF makes a distinction between the logical UI tree and the visual tree. The latter contains all the intrinsic bits and pieces of controls on the screen, giving the programmer enormous control over the exact behaviour and appearance of the controls on screen.

For example, by defining a Button.Template element before invoking Button, Ian was able to override the appearance of buttons. By default, the template has no appearance at all. The behaviour is expressed in a class, while the look and feel is the province of the mark-up.

To avoid infinite recursion, there are some primitives such as vector and bitmap graphics and text-blocks, which underlay all controls.

3.2 Layout Rules for Text

WPF supports a number of different layout engines. Flowed text is supported using the FlowDocument control (this goes well beyond what is supported in HTML. For example, it supports column layouts. See for example the Seattle Post-Intelligencer news reader. Readability heuristics choose the optimal number of columns and layout based on the magnification and the size of the window.
You can however embed user interface elements in the flowed text (this is called “hosting”) and vice versa.

3.3 Data Binding

WPF has “ubiquitous” data binding support. This is more interesting than it sounds! For example, the FFT application consists of an array of floating point numbers presented in two ways – as a set of slider controls and as a waveform.

Chunks of user interface can be generated from data in the application. For example, a data grid can be composed easily out of data binding and text box controls.

DataTemplates are elements that “know” how to present a particular class of object. Very similar to the control templates presented earlier. These can be used as objects in a UI just like the built-in controls such as Button. You can then override the presentation in any way you like – e.g. presenting a list of system fonts in their own font and with a text box to let users type a sample.
4. Silverlight

It’s cross-platform, running on non-Microsoft operating systems and browsers.

It provides a tiny subset of WPF (just the graphics engine). No 3D or ClearType. No hardware acceleration.

Version 1.1 of Silverlight will include core CLR and DLR, supporting C#, VB.NET, Python, Ruby etc. as well as Javascript. It will still be a restricted subset of the full class library. Previews are available now. It will probably be called version 2.0 when released.

This implies that a subset of the .NET framework has been ported to MacOS X (Intel only) and soon under Linux. The German dictionary, the Windows Forms framework, the Server framework and a few other bits and pieces have been missed off to save around 90% of the download size – but it still feels a lot more like .NET than other frameworks.
Microsoft will deny this, but Silverlight really provides much the same functionality as Flash (perhaps with slightly better and faster rendering). Its main attraction will be to project managers trying to reduce the number of different technologies in a project.

5. Main USP

To summarise, the great strengths of WPF are

· Combining previously separate capabilities

· Allowing 
6. Questions and Answers
6.1 What’s the killer app for WPF?

There isn’t one really.

6.2 Why has Microsoft released no WPF applications?

It has – Expression Blend (previously known as Sparkle). What this taught Microsoft was that the tooling needed to be brought up to speed. Visual Studio has only just started supporting WPF development properly. There are products in development.

6.3 Placing UI components at run-time

Data binding is your friend. You can choose the data template based on the types of data presented – e.g. search results automatically show up as images, text, multimedia as appropriate. If the built-in defaults are not what you want, you can override anything.

Custom controls can be written, event handlers can be attached.

6.4 How do you write the tests?

Microsoft’s composite architecture is the approach of using individual elements that can be easily unit-tested and combining them to make complex Uis.
6.5 Business applications in WPF?

WPF tends at the moment to be used for applications that can’t be done in other ways.

6.6 Style Sheets?

There is a whole styling mechanism (not presented today) but it is very different to CSS. This lets you factor out look and feel across an entire application.

6.7 How soon will Silverlight be available for all browsers?

There are users still using IE 5 or 6 – how long will we have to wait before web sites take the plunge?

There will be different answers for different sites. The trendy ones tend to support very little backward compatibility. Microsoft obviously tries to push people to switch to IE7 as early as possible.

6.8 What is the replacement for GDI+?

The MIL with its .NET wrapper is the closest there is to a successor.

6.9 The near and long term future of WPF?

Given the lack of tools currently, how soon will this be mainstream?

WPF has completely changed in the last 6 months. Prior to that, Ian was only able to work on proofs of concept. The trickle of demand for real applications has recently turned into a flood. Vendors will soon be quite successful. A year from now the third-party tool support will be more mature – WPF is getting traction and is becoming mainstream. Once the eco-system is in place, Microsoft will see the business justification for more investment in its own tooling.
At the moment, we’re at the “early adopter” stage when the technology is more suited to specialised applications that need the capability provided by WPF.

6.10 New kinds of UI events?

The event definition has been separated from core types. Microsoft’s new “surface” technology supports multi-touch input. Anyone in the world can define a new class that can generate events into the UI model.

6.11 New security issues?

Yes – it runs in a web browser! Like Java, it supports a sandbox model but presumably some exploits will be discovered in due course. So far, Ian hasn’t heard of any.

6.12 What is the business justification for investing in WPF now?

Examples: people producing turnkey systems with heavy visualisation requirements (e.g. medical scanners, data acquisition systems) – here the hardware compatibility issues are entirely in their control.

6.13 Compatibility with XBAP?

Internet Explorer 7 will automatically download what it needs; other browsers will need a plugin installed first (unless WPF installed as part of Vista or explicitly installed over older versions of Windows).









	Macintosh HD:Users:immo:Documents:BCS OOPS:OOPS meetings:20070307_LargeScaleAgileV2.doc
	Page 5 of 5



